Assembly: NN;
The INeuralNetwork interface is used to work with artificial neural networks.
INeuralNetwork
This interface can be used to create, learn and use a back-propagation network or a Kohonen self-organizing map.
| Method name | Brief description | |
| ApplyConvexCombinationFactor | The ApplyConvexCombinationFactor method applies convex combinatorial transformation to the input elements of the network. | |
| CreateNetwork | The CreateNetwork method creates a neural network according to the assigned string view. | |
| CreateNetworkEx | The CreateNetworkEx method creates a neural network according to the assigned parameters. | |
| DeleteNetwork | The DeleteNetwork method deletes neural network. | |
| DeltasMinimumReachedBP | The DeltasMinimumReachedBP method returns whether the delta value has attained the assigned level. | |
| ExportSynapses | The ExportSynapses method returns string view of the network. | |
| GetClosestNeuron | The GetClosestNeuron method returns neuron index, which weight vector being least of all different from the tested input vector. | |
| GetError | The GetError method returns code of the last error of the neural network. | |
| GetInputValues | The GetInputValues method returns real array of the network input values. | |
| GetLearnRadius | The GetLearnRadius method returns value of the learning step for the specified layer. | |
| GetLearnRate | The GetLearnRate method returns learning rate value for the specified layer. | |
| GetMaximumWeightDelta | The GetMaximumWeightDelta method returns the maximum delta value of the weight of all the synapses. | |
| GetNumberOfInputs | The GetNumberOfInputs method returns the number of network inputs. | |
| GetNumberOfLayers | The GetNumberOfLayers method returns the number of neural network layers. | |
| GetNumberOfOutputs | The GetNumberOfOutputs method returns the number of network outputs. | |
| GetOutputValues | The GetOutputValues method returns the array of network output values. | |
| GetOutputWidth | The GetOutputWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. | |
| GetRowWidth | The GetRowWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. | |
| GetRowWidthEx | The GetRowWidthEx method returns the number of the lines in the specified layer of the Kohonen self-organizing map. | |
| GetSynapse | The GetSynapse method returns the weight value of the specified synapse. | |
| GetUseVectorScalar | The GetUseVectorScalar method returns whether the algorithm of scalar multiplication of vectors is used to calculate the distance between neurons in the specified layer. | |
| ImportSynapses | The ImportSynapses method loads values of synapse weights from the string view. | |
| InitSynapses | The InitSynapses method assigns values of synapse weights for the specified layer according to the assigned parameters. | |
| InitSynapsesConvex | The InitSynapsesConvex method assigns values of synapse weights by using the convex combination algorithm. | |
| InitSynapsesConvexEx | The InitSynapsesConvexEx method assigns values of synapse weights for the specified layer by using the convex combination algorithm. | |
| LearnBack | The LearnBack method performs iteration on learning back-propagation network. | |
| LearnSOFM | The LearnSOFM method learns a Kohonen self-organizing map. | |
| NormalizeInputValues | The NormalizeInputValues method normalizes network input data. | |
| NormalizeInputValuesEx | The NormalizeInputValuesEx method normalizes input values of the specified layer. | |
| NormalizeSynapses | The NormalizeSynapses method normalizes values of synapse weights of all the network layers. | |
| NormalizeSynapsesEx | The NormalizeSynapsesEx method normalizes values of synapse weights of the specified layer. | |
| PropagateBP | The PropagateBP method propagates the signal in the back-propagation network. | |
| PropagateSOFM | The PropagateSOFM method propagates the signal on the Kohonen self-organizing network. | |
| SetInputValues | The SetInputValues method sets network input values. | |
| SetInputValuesConvex | The SetInputValuesConvex method sets network input values by using the convex combinatorial transformation. | |
| SetInputValuesConvexEx | The SetInputValuesConvexEx method sets network input values by using the convex combinatorial transformation and ability of normalization. | |
| SetLearnRadius | The SetLearnRadius method sets network learning step. | |
| SetLearnRadiusEx | The SetLearnRadiusEx method sets network learning step. | |
| SetLearnRate | The SetLearnRate method sets learning rate. | |
| SetLearnRateEx | The SetLearnRateEx method sets leaning rate for the specified layer. | |
| SetMju | The SetMju method sets coefficient of inertia for learning of all the layers of the back-propagation network. | |
| SetMjuEx | The SetMjuEx method sets coefficient of inertia of learning for the specified layer of the back-propagation network. | |
| SetNju | The SetNju method sets learning speed of the back-propagation network. | |
| SetNjuEx | The SetNjuEx method sets learning speed for the specified layer of the back-propagation network. | |
| SetOutputWidth | The SetOutputWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. | |
| SetRowWidth | The SetRowWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. | |
| SetRowWidthEx | The SetRowWidthEx method sets the number of the lines in the specified layer of the Kohonen self-organizing map. | |
| SetSigmoidAlpha | The SetSigmoidAlpha method sets value of the Alpha coefficient for the sigmoid functions of signal propagation in the network. | |
| SetSigmoidFuncs | The SetSigmoidFuncs method sets the type of signal propagation in the network. | |
| SetSigmoidFuncsEx | The SetSigmoidFuncs method sets the type of signal propagation in the network for the specified layer. | |
| SetSynapse | The SetSynapse method sets the value of the specified synapse weight. | |
| SetUseVectorScalar | The SetUseVectorScalar method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons. | |
| SetUseVectorScalarEx | The SetUseVectorScalarEx method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons of the specified layer. |
See also: