Show contents 

Ms > Ms Assembly Interfaces > IMsLinearRegressionTransform > IMsLinearRegressionTransform.ConfidenceLevel

IMsLinearRegressionTransform.ConfidenceLevel

Syntax

ConfidenceLevel: Double;

Description

The ConfidenceLevel property determines the confidence limits relevance. By default the value 0.95 is set to the property.

Example

Executing the example requires that the repository includes a modeling container with the KONT_MODEL identifier. The container has the Var_1 variable, which will be used as a modeling one, and the Var_Factor variable used as a factor.

Sub UserProc;
Var
    MB: IMetabase;
    CrInf: IMetabaseObjectCreateInfo;
    MObj: IMetabaseObject;
    Model: IMsModel;
    Trans: IMsFormulaTransform;
    VarTrans: IMsFormulaTransformVariable;
    Tree: IMsFormulaTransformSlicesTree;
    Slice: IMsFormulaTransformSlice;
    Selector: IMsFormulaTransformSelector;
    Formula: IMsFormula;
    Linear: IMsLinearRegressionTransform;
    Varr: IMsVariableStub;
    TransVar: IMsFormulaTransformVariable;
    TermInfo: IMsFormulaTermInfo;
    Ar: Array[0..1Of Integer;
Begin
    MB := MetabaseClass.Active;
    CrInf := Mb.CreateCreateInfo;
    CrInf.ClassId := MetabaseObjectClass.KE_CLASS_MSMODEL;
    CrInf.Id := "New_LinReg";
    CrInf.Name := "New_LinReg";
    CrInf.Parent := Mb.ItemById("KONT_MODEL");
    CrInf.Permanent := False;
    MObj := Mb.CreateObject(CrInf).Edit;
    Model := MObj As IMsModel;
    Trans := Model.Transform;
    Varr := MB.ItemByIdNamespace("Var_1", MB.ItemById("KONT_MODEL").Key).Bind As IMsVariableStub;
    Trans.Outputs.Add(Varr);
    VarTrans := Trans.Outputs.Item(0);
    Tree := VarTrans.SlicesTree(VarTrans);
    Slice := Tree.CreateSlice(1);
    Selector := Model.Transform.CreateSelector;
    Selector.Slice := Slice;
    Formula := Model.Transform.Transform(Selector);
    Formula.Kind := MsFormulaKind.LinearRegression;
    Formula.Level := DimCalendarLevel.Year;
    Linear := Formula.Method As IMsLinearRegressionTransform;
    Ar[0] := 2;
    Ar[1] := 4;
    Linear.AutoRegressionOrder := Ar;
    Linear.HasConstant := True;
    Varr := MB.ItemByIdNamespace("Var_Factor", MB.ItemById("KONT_MODEL").Key).Bind As IMsVariableStub;
    Trans.Inputs.Add(Varr);
    TransVar := Trans.Inputs.Item(0);
    TermInfo := Trans.CreateTermInfo;
    TermInfo.Slice := TransVar.SlicesTree(VarTrans).CreateSlice(1);
    Linear.Explanatories.Add.Expression.AsString := TermInfo.TermInnerText;
    Linear.ConfidenceLevel := 0.99;
    MObj.Save;
End Sub UserProc;

After executing the example a model is created in the modeling container. The linear regression method is used for model calculation. Settings are determined for this method, in particular the autoregression is used. Autoregression order is two, two and four lags are set for the autoregression elements. The value 0.99 is set for a significance value of confidential limits.

See also:

IMsLinearRegressionTransform