Assembly: NN;
Namespace: Prognoz.Platform.Interop.NN;
The NeuralNetwork class is used to work with artificial neural networks.
Using this class the user can create, learn and use the back-propagation network or self-organizing Kohonen map.
Method name | Brief description | |
ApplyConvexCombinationFactor | The ApplyConvexCombinationFactor method applies convex combinatorial transformation to the input elements of the network. | |
CreateNetwork | The CreateNetwork method creates a neural network according to the assigned string view. | |
CreateNetworkEx | The CreateNetworkEx method creates a neural network according to the assigned parameters. | |
DeleteNetwork | The DeleteNetwork method deletes neural network. | |
DeltasMinimumReachedBP | The DeltasMinimumReachedBP method returns whether the delta value has attained the assigned level. | |
ExportSynapses | The ExportSynapses method returns string view of the network. | |
GetClosestNeuron | The GetClosestNeuron method returns neuron index, which weight vector being least of all different from the tested input vector. | |
GetError | The GetError method returns code of the last error of the neural network. | |
GetInputValues | The GetInputValues method returns real array of the network input values. | |
GetLearnRadius | The GetLearnRadius method returns value of the learning step for the specified layer. | |
GetLearnRate | The GetLearnRate method returns learning rate value for the specified layer. | |
GetMaximumWeightDelta | The GetMaximumWeightDelta method returns the maximum delta value of the weight of all the synapses. | |
GetNumberOfInputs | The GetNumberOfInputs method returns the number of network inputs. | |
GetNumberOfLayers | The GetNumberOfLayers method returns the number of neural network layers. | |
GetNumberOfOutputs | The GetNumberOfOutputs method returns the number of network outputs. | |
GetOutputValues | The GetOutputValues method returns the array of network output values. | |
GetOutputWidth | The GetOutputWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. | |
GetRowWidth | The GetRowWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. | |
GetRowWidthEx | The GetRowWidthEx method returns the number of the lines in the specified layer of the Kohonen self-organizing map. | |
GetSynapse | The GetSynapse method returns the weight value of the specified synapse. | |
GetUseVectorScalar | The GetUseVectorScalar method returns whether the algorithm of scalar multiplication of vectors is used to calculate the distance between neurons in the specified layer. | |
ImportSynapses | The ImportSynapses method loads values of synapse weights from the string view. | |
InitSynapses | The InitSynapses method assigns values of synapse weights for the specified layer according to the assigned parameters. | |
InitSynapsesConvex | The InitSynapsesConvex method assigns values of synapse weights by using the convex combination algorithm. | |
InitSynapsesConvexEx | The InitSynapsesConvexEx method assigns values of synapse weights for the specified layer by using the convex combination algorithm. | |
LearnBack | The LearnBack method performs iteration on learning back-propagation network. | |
LearnSOFM | The LearnSOFM method learns a Kohonen self-organizing map. | |
NormalizeInputValues | The NormalizeInputValues method normalizes network input data. | |
NormalizeInputValuesEx | The NormalizeInputValuesEx method normalizes input values of the specified layer. | |
NormalizeSynapses | The NormalizeSynapses method normalizes values of synapse weights of all the network layers. | |
NormalizeSynapsesEx | The NormalizeSynapsesEx method normalizes values of synapse weights of the specified layer. | |
PropagateBP | The PropagateBP method propagates the signal in the back-propagation network. | |
PropagateSOFM | The PropagateSOFM method propagates the signal on the Kohonen self-organizing network. | |
SetInputValues | The SetInputValues method sets network input values. | |
SetInputValuesConvex | The SetInputValuesConvex method sets network input values by using the convex combinatorial transformation. | |
SetInputValuesConvexEx | The SetInputValuesConvexEx method sets network input values by using the convex combinatorial transformation and ability of normalization. | |
SetLearnRadius | The SetLearnRadius method sets network learning step. | |
SetLearnRadiusEx | The SetLearnRadiusEx method sets network learning step. | |
SetLearnRate | The SetLearnRate method sets learning rate. | |
SetLearnRateEx | The SetLearnRateEx method sets leaning rate for the specified layer. | |
SetMju | The SetMju method sets coefficient of inertia for learning of all the layers of the back-propagation network. | |
SetMjuEx | The SetMjuEx method sets coefficient of inertia of learning for the specified layer of the back-propagation network. | |
SetNju | The SetNju method sets learning speed of the back-propagation network. | |
SetNjuEx | The SetNjuEx method sets learning speed for the specified layer of the back-propagation network. | |
SetOutputWidth | The SetOutputWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. | |
SetRowWidth | The SetRowWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. | |
SetRowWidthEx | The SetRowWidthEx method sets the number of the lines in the specified layer of the Kohonen self-organizing map. | |
SetSigmoidAlpha | The SetSigmoidAlpha method sets value of the Alpha coefficient for the sigmoid functions of signal propagation in the network. | |
SetSigmoidFuncs | The SetSigmoidFuncs method sets the type of signal propagation in the network. | |
SetSigmoidFuncsEx | The SetSigmoidFuncs method sets the type of signal propagation in the network for the specified layer. | |
SetSynapse | The SetSynapse method sets the value of the specified synapse weight. | |
SetUseVectorScalar | The SetUseVectorScalar method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons. | |
SetUseVectorScalarEx | The SetUseVectorScalarEx method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons of the specified layer. |
See also: