ForestSize: Integer;
ForestSize: integer;
The ForestSize property determines the number of trees in random forest.
Available values within the [1; ∞) range.
Default value is 100.
Executing the example requires that the repository contains a table containing data for analysis with the DM_TABLE identifier. A regular report with the DM_REPORT_RES identifier where analysis results will be loaded must also be present.
Add links to the Metabase, Ms, Report, Stat, Tab, Ui system assemblies.
Sub UserRandFor;
Var
mb: IMetabase;
TableDS: IDmTableDataSource;
ReportDS: IDmReportDataSource;
Method: IDmMethod;
Report: IPrxReport;
Shs: IPrxSheets;
Sheet: ITabSheet;
RandFor: IDmRandomForest;
Binning: IDmField;
i: Integer;
Attrs: Array Of Integer;
Target: IUiCommandTarget;
Reports: IDmReports;
DmReport: IDmReport;
Begin
mb := MetabaseClass.Active;
// Create table data source
TableDS := (New TableDataSource.Create) As IDmTableDataSource;
// Determine source table
TableDS.Table := mb.ItemByID("DM_TABLE").Bind;
// Determine that data is located in table columns
TableDS.DataInColumns := True;
// Create data source which is a regular report
ReportDS := (New ReportDataSource.Create) As IDmReportDataSource;
// Get regular report
Report := mb.ItemByID("DM_REPORT_RES").Edit As IPrxReport;
Shs := Report.Sheets;
Shs.Clear;
// Create page to load results
Sheet := (Shs.Add("", PrxSheetType.Table) As IPrxTable).TabSheet;
// Determine page to which data will be loaded
ReportDS.TabSheet := Sheet;
// Determine data range
ReportDS.Range := Sheet.Cell(0, 0);
ReportDS.AddResultColumn("Category");
// Create calculation method
Method := (New DataMiningMethod.Create) As IDmMethod;
// Determine method type
Method.Kind := DmMethodKind.RandomForest;
// Set entry data source
Method.InputDataSource := TableDS;
// Set data consumer
Method.OutputDataSource := ReportDS;
// Set up calculation method parameters
RandFor := Method.Details As IDmRandomForest;
// Forest size
RandFor.ForestSize := 20;
RandFor.LearningSamplePortion := 0.6;
// Number of attributes
RandFor.NumberOfPredictors := 2;
//Forest size
RandFor.TreeSizeSpecification.MaximumNumberOfLevels := 10;
RandFor.TreeSizeSpecification.MinimumNumberOfCases := 2;
// Consider each category as an attribute
RandFor.TreeSizeSpecification.ReduceCategories := True;
// Determine column for analysis
RandFor.Target := TableDS.FieldCount - 1;
Debug.WriteLine("Column for key impact factors analysis:");
Debug.WriteLine(" - " + TableDS.Field(RandFor.Target).Name);
// Set factors impacting analysis
Attrs := New Integer[TableDS.FieldCount - 2];
Debug.WriteLine("Factors that impact analysis:");
For i := 0 To Attrs.Length - 1 Do
Attrs[i] := i + 1;
Binning := TableDS.Field(i + 1);
Debug.WriteLine(Binning.Index.ToString + ". " + Binning.Name);
Debug.Indent;
// Set parameters of the Binning procedure
If Binning.IsNumerical Then
Binning.BinningType := BinningMethod.EqualDepth;
Binning.CategoriesCount := 4;
Binning.TreatNanAsCategory := False;
Debug.WriteLine("number of non empty values: " + Binning.NonEmptyCount.ToString);
End If;
Select Case Binning.FieldType
Case DmFieldType.Date: Debug.WriteLine("data type: date");
Case DmFieldType.Integer: Debug.WriteLine("data type: integer");
Case DmFieldType.Numeric: Debug.WriteLine("data type: numeric");
Case DmFieldType.String: Debug.WriteLine("data type: string");
End Select;
Debug.WriteLine("data source: " + Binning.DataSource.Caption);
Select Case Binning.ExplanatoryType
Case DmExplanatoryType.Continuous: Debug.WriteLine("factor type: quantitative");
Case DmExplanatoryType.Ordered: Debug.WriteLine("factor type: quantitative");
Case DmExplanatoryType.Categorical: Debug.WriteLine("factor type: quantitative");
End Select;
Debug.Unindent;
End For;
RandFor.Attributes := Attrs;
// Analyze and load results
Reports := Method.Execute;
DmReport := reports.FindByType(DmReportType.Forest);
ReportDS := DmReport.Generate;
Debug.WriteLine("Report title: " + DmReport.Caption);
Debug.WriteLine("Analysis type: " + RandFor.DisplayName);
ReportDS.TabSheet.View.Selection.SelectAll;
ReportDS.TabSheet.View.Selection.Copy;
Sheet.Table.Paste;
Sheet.Columns(0, 1).AdjustWidth;
Sheet.Rows(0, 1).AdjustHeight;
Report.Sheets.Item(0).Name := ReportDS.Caption;
(Report As IMetabaseObject).Save;
// Open regular report containing analysis result
Target := WinApplication.Instance.GetObjectTarget(Report As IMetabaseObject);
Target.Execute("Object.Open", Null);
End Sub UserRandFor;
Imports Prognoz.Platform.Interop.Metabase;
Imports Prognoz.Platform.Interop.Ms;
Imports Prognoz.Platform.Interop.Report;
Imports Prognoz.Platform.Interop.Stat;
Imports Prognoz.Platform.Interop.Tab;
Imports Prognoz.Platform.Interop.Ui;
…
Public Shared Sub Main(Params: StartParams);
Var
mb: IMetabase;
TableDS: IDmTableDataSource;
ReportDS: IDmReportDataSource;
Method: IDmMethod;
Report: IPrxReport;
Shs: IPrxSheets;
Sheet: TabSheet;
RandFor: IDmRandomForest;
Binning: IDmField;
i: Integer;
Attrs: Array Of Integer;
Target: IUiCommandTarget;
Reports: IDmReports;
DmReport: IDmReport;
WinApplication: WinApplicationClassClass = New WinApplicationClassClass();
Begin
mb := Params.Metabase;
// Create table data source
TableDS := (New TableDataSource.Create()) As IDmTableDataSource;
// Determine source table
TableDS.Table := mb.ItemByID["DM_TABLE"].Bind();
// Determine that data is located in table columns
TableDS.DataInColumns := True;
// Create data source which is a regular report
ReportDS := (New ReportDataSource.Create()) As IDmReportDataSource;
// Get regular report
Report := mb.ItemByID["DM_REPORT_RES"].Edit() As IPrxReport;
Shs := Report.Sheets;
Shs.Clear();
// Create page to load results
Sheet := (Shs.Add("", PrxSheetType.pstTable) As IPrxTable).TabSheet;
// Determine page to which data will be loaded
ReportDS.TabSheet := Sheet;
// Determine data range
ReportDS.Range := Sheet.Cell[0, 0];
ReportDS.AddResultColumn("Category");
// Create calculation method
Method := (New DataMiningMethod.Create()) As IDmMethod;
// Determine method type
Method.Kind := DmMethodKind.dmmkRandomForest;
// Set entry data source
Method.InputDataSource := TableDS;
// Set data consumer
Method.OutputDataSource := ReportDS;
// Set up calculation method parameters
RandFor := Method.Details As IDmRandomForest;
// Forest size
RandFor.ForestSize := 20;
RandFor.LearningSamplePortion := 0.6;
// Number of attributes
RandFor.NumberOfPredictors := 2;
//Forest size
RandFor.TreeSizeSpecification.MaximumNumberOfLevels := 10;
RandFor.TreeSizeSpecification.MinimumNumberOfCases := 2;
// Consider each category as an attribute
RandFor.TreeSizeSpecification.ReduceCategories := True;
// Determine column for analysis
RandFor.Target := TableDS.FieldCount - 1;
System.Diagnostics.Debug.WriteLine("Column to analyze key impact factors:");
System.Diagnostics.Debug.WriteLine(" - " + TableDS.Field[RandFor.Target].Name);
// Set factors impacting analysis
Attrs := New Integer[TableDS.FieldCount - 2];
System.Diagnostics.Debug.WriteLine("Factors impacting analysis:");
For i := 0 To Attrs.Length - 1 Do
Attrs[i] := i + 1;
Binning := TableDS.Field[i + 1];
System.Diagnostics.Debug.WriteLine(Binning.Index.ToString() + ". " + Binning.Name);
System.Diagnostics.Debug.Indent();
// Set parameters of the Binning procedure
If Binning.IsNumerical Then
Binning.BinningType := BinningMethod.bmEqualDepth;
Binning.CategoriesCount := 4;
Binning.TreatNanAsCategory := False;
System.Diagnostics.Debug.WriteLine("number of non-empty values: " + Binning.NonEmptyCount.ToString());
End If;
Select Case Binning.FieldType
Case DmFieldType.dftDate: System.Diagnostics.Debug.WriteLine("data type: date");
Case DmFieldType.dftInteger: System.Diagnostics.Debug.WriteLine("data type: integer");
</font><font color="#008080">Case</font><font color="#000000"> DmFieldType.dftNumeric: System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"data type: numeric"</font><font color="#000000">);<br/> </font><font color="#008080">Case</font><font color="#000000"> DmFieldType.dftString: System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"data type: string"</font><font color="#000000">);<br/> </font><font color="#008080">End</font><font color="#000000"> </font><font color="#008080">Select</font><font color="#000000">;<br/> </font><font color="#008080">Select</font><font color="#000000"> </font><font color="#008080">Case</font><font color="#000000"> Binning.ExplanatoryType<br/> </font><font color="#008080">Case</font><font color="#000000"> DmExplanatoryType.detContinuous: System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"factor type: quantitative"</font><font color="#000000">);<br/> </font><font color="#008080">Case</font><font color="#000000"> DmExplanatoryType.detOrdered: System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"factor type: order"</font><font color="#000000">);<br/> </font><font color="#008080">Case</font><font color="#000000"> DmExplanatoryType.detCategorical: System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"factor type: categorical"</font><font color="#000000">);<br/> </font><font color="#008080">End</font><font color="#000000"> </font><font color="#008080">Select</font><font color="#000000">;<br/> System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"data source: "</font><font color="#000000"> + Binning.DataSource.Caption);<br/> System.Diagnostics.Debug.Unindent();<br/> </font><font color="#008080">End</font><font color="#000000"> </font><font color="#008080">For</font><font color="#000000">;<br/> RandFor.Attributes := Attrs;<br/> </font><font color="#008000">// Analyze and load results<br/> </font><font color="#000000"> Reports := Method.Execute();<br/> DmReport := reports.FindByType[DmReportType.drtForest];<br/> ReportDS := DmReport.Generate();<br/> System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"Report title: "</font><font color="#000000"> + DmReport.Caption);<br/> System.Diagnostics.Debug.WriteLine(</font><font color="#800000">"Analysis type: "</font><font color="#000000"> + RandFor.DisplayName);<br/> ReportDS.TabSheet.View.Selection.SelectAll();<br/> ReportDS.TabSheet.View.Selection.Copy();<br/> Sheet.Table.Paste();<br/> Sheet.Columns[</font><font color="#008000">0</font><font color="#000000">, </font><font color="#008000">1</font><font color="#000000">].AdjustWidth(-</font><font color="#008000">1</font><font color="#000000">, -</font><font color="#008000">1</font><font color="#000000">);<br/> Sheet.Rows[</font><font color="#008000">0</font><font color="#000000">, </font><font color="#008000">1</font><font color="#000000">].AdjustHeight(-</font><font color="#008000">1</font><font color="#000000">, -</font><font color="#008000">1</font><font color="#000000">);<br/> Report.Sheets.Item[</font><font color="#008000">0</font><font color="#000000">].Name := ReportDS.Caption;<br/> (Report </font><font color="#008080">As</font><font color="#000000"> IMetabaseObject).Save();<br/> </font><font color="#008000">// Open regular report containing analysis results<br/> </font><font color="#000000"> Target := WinApplication.Instance[</font><font color="#008080">Null</font><font color="#000000">].GetObjectTarget(Report </font><font color="#008080">As</font><font color="#000000"> IMetabaseObject);<br/> Target.Execute(</font><font color="#800000">"Object.Open"</font><font color="#000000">, </font><font color="#008080">Null</font><font color="#000000">, </font><font color="#008080">Null</font><font color="#000000">);<br/> </font><font color="#008080">End</font><font color="#000000"> </font><font color="#008080">Sub</font><font color="#000000">;</font>
The result of procedure execution: for data from the DM_TABLE table, data mining is executed using the Random Forest algorithm of the Decision Tree Ensembles method using the Binning procedure for numeric data, analysis parameters are displayed to the console window, analysis results are loaded to the DM_REPORT_RES report.
See also: