FilledDependent: Array;
The FilledDependent property returns predicted classification.
To get summary results of classification, use the ISmRandomForest.ClassificationSummary property.
Add a link to the Stat system assembly.
Sub UserProc;
Var
rf: SmRandomForest;
Y, CatX: Array[16] Of Integer;
X: Array[16] Of Double;
res, i, j: Integer;
s: string;
Explanatories: ISlSeries;
Explan: ISlSerie;
ExplInt: ISlSeriesInt;
ExplanInt: ISlSerieInt;
CatList: Array Of Integer;
Begin
rf := New SmRandomForest.Create;
// Set explained series
Y[00] := 0; Y[08] := 1;
Y[01] := 1; Y[09] := 2;
Y[02] := 1; Y[10] := 0;
Y[03] := 0; Y[11] := 2;
Y[04] := 1; Y[12] := 1;
Y[05] := 2; Y[13] := 2;
Y[06] := 1; Y[14] := 2;
Y[07] := 2; Y[15] := 0;
rf.Dependent.Value := Y;
// Set explanatory series (categorical)
CatX[00] := 1; CatX[08] := 1;
CatX[01] := 3; CatX[09] := 2;
CatX[02] := 1; CatX[10] := 3;
CatX[03] := 3; CatX[11] := 2;
CatX[04] := 1; CatX[12] := 3;
CatX[05] := 2; CatX[13] := 1;
CatX[06] := 1; CatX[14] := 1;
CatX[07] := 2; CatX[15] := 3;
ExplInt := rf.ExplanatoriesCategorical;
ExplInt.Clear;
ExplanInt := ExplInt.Add;
ExplanInt.Id := "Categorical_X";
ExplanInt.Name := "CatX";
ExplanInt.Value := CatX;
// Set explanatory series (quantitative)
X[00] := 34.13; X[08] := 29.27;
X[01] := 21.52; X[09] := 23.39;
X[02] := 25.43; X[10] := 28.28;
X[03] := 43.42; X[11] := 43.55;
X[04] := 40.19; X[12] := 44.80;
X[05] := 24.97; X[13] := 23.23;
X[06] := 20.57; X[14] := 37.14;
X[07] := 30.81; X[15] := 27.44;
Explanatories := rf.ExplanatoriesContinuous;
Explanatories.Clear;
Explan := Explanatories.Add;
Explan.Id := "Continuous_X";
Explan.Name := "X";
Explan.Value := X;
// Forest size
rf.ForestSize := 20;
rf.LearningSamplePortion := 0.6;
// Trees size
res := rf.Execute;
If (res = 0) Then
Debug.WriteLine(" === Probability ===");
Debug.Indent;
For i := 0 To rf.Probability.GetUpperBound(1) Do
For j := 0 To rf.Probability.GetUpperBound(2) Do
s := s + rf.Probability[i, j].ToString + " ";
End For;
Debug.WriteLine(s);
s := "";
End For;
Debug.Unindent;
Debug.WriteLine(" === Predicted classification ===");
Debug.Indent;
For i := 0 To rf.FilledDependent.Length - 1 Do
Debug.WriteLine((i + 1).ToString + ". " + rf.FilledDependent[i].ToString);
End For;
Debug.Unindent;
Debug.WriteLine("=== Original values of categorical data series ===");
Debug.Indent;
For i := 0 To ExplanInt.Value.Length - 1 Do
Debug.WriteLine((i + 1).ToString + ". " + ExplanInt.OriginalValue[i].ToString);
End For;
Debug.Unindent;
Debug.WriteLine(" === Summary results of classification ===");
Debug.Indent;
s := "";
For i := 0 To rf.ClassificationSummary.GetUpperBound(1) Do
For j := 0 To rf.ClassificationSummary.GetUpperBound(2) Do
s := s + rf.ClassificationSummary[i, j].ToString + " ";
End For;
Debug.WriteLine(s);
s := "";
End For;
Debug.Unindent;
// Display list of categories
CatList := rf.CategoriesList;
If CatList.Length > 0 Then
Debug.WriteLine("List of categories:"); Debug.Indent;
For i := 0 To CatList.Length - 1 Do
Debug.WriteLine(CatList[i]);
End For;
Debug.Unindent;
End If;
Else
Debug.WriteLine(rf.Errors);
End If;
End Sub UserProc;
After executing the example the console window displays:
Probability.
Predicted classification.
Original values of categorical data series.
Summary results of classification.
List of categories.
See also: