BinningSettings: IBinningSettings;
The BinningSettings property returns parameters of the Binning procedure.
Binning is a procedure of data preparation for data mining methods working with categorical data.
The method idea is that input array of numerical data is split into specified number of ranges according to the specified splitting rules. Obtained ranges are further used in data mining analysis as single categories.
To get results of the Binning procedure execution, use the ISlSerie.Categories property.
Add links to the system assemblies: MathFin, Stat.
Sub UserProc;
Var
method: SmDecisionTree;
y, x1, x2, x3, x4: array[15] Of double;
Explanatories: ISlSeries;
Dependent, FilledDependent: ISlSerie;
BinningSettings: IBinningSettings;
res: integer;
maxlength, i: integer;
strng: string;
leng: array[4] Of integer;
Function AddStrVal(str, strval: string): string;
Begin
Return str + " " + strval;
End Function AddStrVal;
Begin
// Create object to calculate method
method := New SmDecisionTree.Create;
// Set variables initial values
x1[0] := 2; x2[0] := 2; x3[0] := 4; x4[0] := 1; y[0] := 1;
x1[1] := 5; x2[1] := 4; x3[1] := 5; x4[1] := 2; y[1] := 2;
x1[2] := 15; x2[2] := 6; x3[2] := 6; x4[2] := 3; y[2] := 3;
x1[3] := 3; x2[3] := 1; x3[3] := 34; x4[3] := 3; y[3] := 1;
x1[4] := 8; x2[4] := 3; x3[4] := 7; x4[4] := 2; y[4] := 2;
x1[5] := 11; x2[5] := 5; x3[5] := 5; x4[5] := 1; y[5] := 3;
x1[6] := 1; x2[6] := 2; x3[6] := 3; x4[6] := 3; y[6] := 1;
x1[7] := 6; x2[7] := 4; x3[7] := 5; x4[7] := 2; y[7] := 2;
x1[8] := 12; x2[8] := 6; x3[8] := 12; x4[8] := 3; y[8] := 3;
x1[9] := 4; x2[9] := 2; x3[9] := 8; x4[9] := 2; y[9] := 1;
x1[10] := 7; x2[10] := 4; x3[10] := 13; x4[10] := 2; y[10] := 2;
x1[11] := 13; x2[11] := 6; x3[11] := 6; x4[11] := 2; y[11] := 3;
x1[12] := 1; x2[12] := 1; x3[12] := 9; x4[12] := 1; y[12] := Double.Nan;
x1[13] := 9; x2[13] := 4; x3[13] := 6; x4[13] := 1; y[13] := Double.Nan;
x1[14] := 11; x2[14] := 7; x3[14] := 5; x4[14] := 1; y[14] := Double.Nan;
// Set explained series
method.Dependent.Value := y;
// Define explanatory series
Explanatories := method.Explanatories;
Explanatories.Add.Value := x1;
Explanatories.Add.Value := x2;
Explanatories.Add.Value := x3;
Explanatories.Add.Value := x4;
// Get parameters of the Binning procedure of the explained series
Dependent := method.Dependent;
BinningSettings := Dependent.BinningSettings;
// Set binning method
BinningSettings.Method := BinningMethod.EqualDepth;
// Set number of resulting categories
BinningSettings.NumOfCategories := 4;
// Set maximum number of iterations
BinningSettings.MaxIt := 9;
// Execute method calculation
res := method.Execute;
// Display classification results
Debug.WriteLine(" == Classification == ");
Debug.WriteLine(" No in in_cat out_cat out");
FilledDependent := method.FilledDependent;
leng[0] := Dependent.Value.Length;
leng[1] := Dependent.Categories.Length;
leng[2] := FilledDependent.Categories.Length;
leng[3] := FilledDependent.Value.Length;
maxlength := Math.MaxI(leng);
For i := 0 To maxlength - 1 Do
strng := i.ToString;
If (i < leng[0]) Then strng := addstrval(strng, Dependent.Value[i].ToString);
Else strng := addstrval(strng, "-"); End If;
If (i < leng[1]) Then strng := addstrval(strng, Dependent.Categories[i].ToString);
Else strng := addstrval(strng, "-"); End If;
If (i < leng[2]) Then strng := addstrval(strng, FilledDependent.Categories[i].ToString);
Else strng := addstrval(strng, "-"); End If;
If (i < leng[3]) Then strng := addstrval(strng, FilledDependent.Value[i].ToString);
Else strng := addstrval(strng, "-"); End If;
Debug.WriteLine(strng);
End For;
End Sub UserProc;
After executing the example substitution of missing data will be executed in series values using decision tree. To split explanatory series into categories, the Binning procedure will be used.
See also: