NN > NN Assembly Interfaces > INeuralNetwork
Assembly: NN;
Namespace: Prognoz.Platform.Interop.NN;
The INeuralNetwork interface is used to work with artificial neural networks.
INeuralNetwork
This interface can be used to create, learn and use a back-propagation network or a Kohonen self-organizing map.
Method name | Brief description | |
![]() |
ApplyConvexCombinationFactor | The ApplyConvexCombinationFactor method applies convex combinatorial transformation to the input elements of the network. |
![]() |
CreateNetwork | The CreateNetwork method creates a neural network according to the assigned string view. |
![]() |
CreateNetworkEx | The CreateNetworkEx method creates a neural network according to the assigned parameters. |
![]() |
DeleteNetwork | The DeleteNetwork method deletes neural network. |
![]() |
DeltasMinimumReachedBP | The DeltasMinimumReachedBP method returns whether the delta value has attained the assigned level. |
![]() |
ExportSynapses | The ExportSynapses method returns string view of the network. |
![]() |
GetClosestNeuron | The GetClosestNeuron method returns neuron index, which weight vector being least of all different from the tested input vector. |
![]() |
GetError | The GetError method returns code of the last error of the neural network. |
![]() |
GetInputValues | The GetInputValues method returns real array of the network input values. |
![]() |
GetLearnRadius | The GetLearnRadius method returns value of the learning step for the specified layer. |
![]() |
GetLearnRate | The GetLearnRate method returns learning rate value for the specified layer. |
![]() |
GetMaximumWeightDelta | The GetMaximumWeightDelta method returns the maximum delta value of the weight of all the synapses. |
![]() |
GetNumberOfInputs | The GetNumberOfInputs method returns the number of network inputs. |
![]() |
GetNumberOfLayers | The GetNumberOfLayers method returns the number of neural network layers. |
![]() |
GetNumberOfOutputs | The GetNumberOfOutputs method returns the number of network outputs. |
![]() |
GetOutputValues | The GetOutputValues method returns the array of network output values. |
![]() |
GetOutputWidth | The GetOutputWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. |
![]() |
GetRowWidth | The GetRowWidth method returns the number of the lines in the output layer of the Kohonen self-organizing map. |
![]() |
GetRowWidthEx | The GetRowWidthEx method returns the number of the lines in the specified layer of the Kohonen self-organizing map. |
![]() |
GetSynapse | The GetSynapse method returns the weight value of the specified synapse. |
![]() |
GetUseVectorScalar | The GetUseVectorScalar method returns whether the algorithm of scalar multiplication of vectors is used to calculate the distance between neurons in the specified layer. |
![]() |
ImportSynapses | The ImportSynapses method loads values of synapse weights from the string view. |
![]() |
InitSynapses | The InitSynapses method assigns values of synapse weights for the specified layer according to the assigned parameters. |
![]() |
InitSynapsesConvex | The InitSynapsesConvex method assigns values of synapse weights by using the convex combination algorithm. |
![]() |
InitSynapsesConvexEx | The InitSynapsesConvexEx method assigns values of synapse weights for the specified layer by using the convex combination algorithm. |
![]() |
LearnBack | The LearnBack method performs iteration on learning back-propagation network. |
![]() |
LearnSOFM | The LearnSOFM method learns a Kohonen self-organizing map. |
![]() |
NormalizeInputValues | The NormalizeInputValues method normalizes network input data. |
![]() |
NormalizeInputValuesEx | The NormalizeInputValuesEx method normalizes input values of the specified layer. |
![]() |
NormalizeSynapses | The NormalizeSynapses method normalizes values of synapse weights of all the network layers. |
![]() |
NormalizeSynapsesEx | The NormalizeSynapsesEx method normalizes values of synapse weights of the specified layer. |
![]() |
PropagateBP | The PropagateBP method propagates the signal in the back-propagation network. |
![]() |
PropagateSOFM | The PropagateSOFM method propagates the signal on the Kohonen self-organizing network. |
![]() |
SetInputValues | The SetInputValues method sets network input values. |
![]() |
SetInputValuesConvex | The SetInputValuesConvex method sets network input values by using the convex combinatorial transformation. |
![]() |
SetInputValuesConvexEx | The SetInputValuesConvexEx method sets network input values by using the convex combinatorial transformation and ability of normalization. |
![]() |
SetLearnRadius | The SetLearnRadius method sets network learning step. |
![]() |
SetLearnRadiusEx | The SetLearnRadiusEx method sets network learning step. |
![]() |
SetLearnRate | The SetLearnRate method sets learning rate. |
![]() |
SetLearnRateEx | The SetLearnRateEx method sets leaning rate for the specified layer. |
![]() |
SetMju | The SetMju method sets coefficient of inertia for learning of all the layers of the back-propagation network. |
![]() |
SetMjuEx | The SetMjuEx method sets coefficient of inertia of learning for the specified layer of the back-propagation network. |
![]() |
SetNju | The SetNju method sets learning speed of the back-propagation network. |
![]() |
SetNjuEx | The SetNjuEx method sets learning speed for the specified layer of the back-propagation network. |
![]() |
SetOutputWidth | The SetOutputWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. |
![]() |
SetRowWidth | The SetRowWidth method sets the number of the lines in the output layer of the Kohonen self-organizing map. |
![]() |
SetRowWidthEx | The SetRowWidthEx method sets the number of the lines in the specified layer of the Kohonen self-organizing map. |
![]() |
SetSigmoidAlpha | The SetSigmoidAlpha method sets value of the Alpha coefficient for the sigmoid functions of signal propagation in the network. |
![]() |
SetSigmoidFuncs | The SetSigmoidFuncs method sets the type of signal propagation in the network. |
![]() |
SetSigmoidFuncsEx | The SetSigmoidFuncs method sets the type of signal propagation in the network for the specified layer. |
![]() |
SetSynapse | The SetSynapse method sets the value of the specified synapse weight. |
![]() |
SetUseVectorScalar | The SetUseVectorScalar method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons. |
![]() |
SetUseVectorScalarEx | The SetUseVectorScalarEx method determines whether to apply the algorithm of scalar multiplication of vectors to calculate the distance between neurons of the specified layer. |
See also: