IMath

Integer: MathFin;

Namespace: Prognoz.Platform.Interop.MathFin;

Description

The IMath interface contains properties and methods that implement mathematical functions.

Inheritance Hierarchy

          IMath

Properties

  Property name Brief description
The ErrorMsg property returns the error information message.
The Status property returns an error code.

Methods

  Brief description
The Abs method returns absolute value (module) of number.
The AbsD method returns the absolute value (module) of a high-precision decimal number.
The AbsI method returns the absolute value (module) of an integer number.
The ACos method returns the arccosine of a number.
The ACosH method returns the hyperbolic arccosine of the specified number.
The ACot method returns the arccotangent of value.
The ACotH method returns the hyperbolic arc cotangent of the specified value.
The ASin method returns the arcsine of the number.
The ASinH method returns hyperbolic arcsine of the specified number.
The ATan method returns the arctangent of a number.
The ATan2 method returns the arctangent for specified X and Y coordinates.
The ATanH method returns the hyperbolic arctangent of the specified number.
The Average method returns arithmetic average of its arguments.
The AverageI method returns arithmetic average of integer arguments.
The Ceiling method rounds up the number to the nearest number, which is a multiple of precision.
The CeilingD method rounds up the number to the nearest high-precision number, which is a multiple of precision.
The CeilingI method rounds up the number to the nearest integer, which is a multiple of precision.
The CholeskyDecomposition method returns Cholesky decomposition result.
The Combin method returns the number of combinations for the specified number of objects.
The Cos method returns a cosine for the specified angle.
The CosH method returns the hyperbolic cosine of the specified number.
The Cot method returns the cotangent of the specified angle.
The CotH method returns the hyperbolic cotangent of the specified value.
The Create method creates an instance of interface object.
The Degrees method returns the value, converted from radians to degrees.
The DivD method returns an integer part of the quotient ion dividing of two decimal high-precision numbers.
The Even method rounds the specified value to the nearest even integer.
The Exp method returns the Euler number raised to the specified power.
The Fact method returns a number factorial.
The Floor method rounds down the number to the nearest number, which is a multiple of precision.
The FloorD method returns the result of rounding down to the nearest high-precision number that is the multiple of precision.
The FloorI method rounds down to the nearest integer that is multiple of precision.
The Gcd method returns greatest common divisor.
The Int method rounds the specified number down to the nearest integer.
The IntD method rounds the specified decimal high-precision number to the nearest least integer.
The Lcm method returns the least common multiple.
The Ln method returns a natural logarithm of number.
The Log method returns a logarithm of the number by the specified base.
The Log10 method returns a base-10 logarithm of the number.
The Max method returns the maximum value from the specified set of values.
The MaxI method returns the maximum integer value from the specified set of values.
The MDeterm method returns the determinant of the specified matrix.
The Min method returns the minimum value from a specified set of values.
The MinI method returns the minimum integer value from a specified set of values.
The MInverse method returns a reverse matrix for the specified array.
The MMult method returns a product of set matrices.
The Mod_ method returns the remainder from dividing of two decimal numbers.
The ModD method returns the remainder from dividing of two decimal high-precision numbers.
The Mqr method returns the result of QR-decomposition of a real matrix.
The MRound method returns a number rounded with the specified precision.
The Msvd method returns the result of singular decomposition of a real matrix.
The Mtranspose method returns transposed array.
The Multinominal method returns the ratio of the factorial of the sum of values to the factorials product.
The Odd method rounds the specified value to the nearest odd integer.
The Pi method returns a Pi number (3,14159265358979) truncated to 14 decimal places.
The Power method returns the result of raising a real number to power.
The PowerI method returns the result of raising an integer number to power.
The Product method returns the product of all number of the set array.
The Quotient method returns the integer part of the dividend on dividing of two decimal numbers.
The Radians method returns the value transformed from degrees to radians.
The Rand method returns a random uniformly distributed real number within the range [0; 1).
The RandBetween method returns a random number within the range between two set values.
The RandBetweenI method returns a random integer number between two specified numbers.
The RndPermutation method performs pseudorandom permutation of an array.
The RndSample method performs pseudorandom sampling from the array.
The Roman method transforms an Arabic number to a Roman number in text format.
The Round method returns the result of rounding a number to the specified number of decimal places.
The RoundD method returns the result of rounding down a decimal high-precision number to the specified number of decimal places.
The RoundDDown method returns the result of rounding a decimal high-precision number to the nearest value, less by module.
The RoundDown method returns the result of rounding to the nearest value, less by module.
The RoundDUp method returns the result of rounding of a high-precision decimal number to the nearest value, greater by module.
The RoundUp method returns the number, rounded to the nearest value, greater by module.
The SeriesSum method returns the sum of the power series.
The Sign method returns the sign of a real number.
The SignI method returns the sign of an integer.
The Sin method returns the sine of the specified angle.
The SinH method returns a hyperbolic sine of the specified number.
The Sqrt method returns the square root of the specified value.
The SqrtPi method returns a square root from the result of the "Value * "Pi"" expression.
The Sum method returns the sum of elements of the specified array.
The SumD method returns the sum of high-precision decimal numbers of the specified array.
The SumI method returns the sum of elements (integers) of the specified array.
The SumProduct method multiplies the corresponding elements of the specified arrays and returns the sum of products.
The SumSq method returns the sum of squares of arguments.
The SumSqD method returns the sum of squares of high-precision decimal numbers.
The SumX2MY2 method returns the sum of differences between squares of the corresponding values in two arrays.
The SumX2PY2 method returns the sum of square sums of the corresponding values in two arrays.
The SumXMY2 method returns the sum of squares of differences of the corresponding values in two arrays.
The Tan method returns the tangent of the specified angle.
The TanH method returns hyperbolic tangent of the specified number.
The Trunc method truncates variable points to selected number of decimal places.

See also:

MathFin Assembly Interfaces