Contents
Consider the example of creating a model with variables on attributes, which uses the linear regression method (OLS estimation).
Executing the example requires that the repository contains a modeling container with the MS identifier and a database with the TSDB identifier. This time series database must contain mandatory custom attributes of series being references to the dictionary.
Add links to the Cubes, Dimensions, Metabase, Ms, Stat system assemblies.
Sub ModelAttr;
Var
Mb: IMetabase;
CrInf: IMetabaseObjectCreateInfo;
Model: IMsModel;
Transform: IMsFormulaTransform;
TransformVarables: IMsFormulaTransformVariables;
RubrDescr: IMetabaseObjectDescriptor;
Stub: IVariableStub;
TransVar: IMsFormulaTransformVariable;
Tree: IMsFormulaTransformSlicesTree;
Slice: IMsFormulaTransformSlice;
Selector: IMsFormulaTransformSelector;
Formula: IMsFormula;
Linear: IMsLinearRegressionTransform;
Ar: Array[0..1] Of Integer;
TermInfo: IMsFormulaTermInfo;
Period: IMsModelPeriod;
Begin
Mb := MetabaseClass.Active;
// Specify basic parameters of the model as a repository object
CrInf := Mb.CreateCreateInfo;
CrInf.ClassId := MetabaseObjectClass.KE_CLASS_MSMODEL;
// Specify model identifier
CrInf.Id := Mb.GenerateId("MODEL_LINEAR_REGRESSION", Mb.ItemById("MS").Key);
// Specify model name
CrInf.Name := "Model of linear regression";
// Specify modeling container which will contain the model
CrInf.Parent := Mb.ItemById("MS");
// Create a model
Model := Mb.CreateObject(CrInf).Edit As IMsModel;
// Get object to set up model parameters
Transform := Model.Transform;
// Get object to work with output variable
TransformVarables := Transform.Outputs;
// Get time series database (TSDB)
RubrDescr := Mb.ItemById("TSDB");
// Cast obtained TSDB to abstract data source
Stub := RubrDescr.Bind As IVariableStub;
// Use TSDB as a data source of output variable
TransVar := TransformVarables.Add(Stub);
// Specify output variable slice
Tree := TransVar.SlicesTree(TransVar);
Slice := Tree.CreateSlice(1);
// Get model settings for output variable slice
Selector := Transform.CreateSelector;
Selector.Slice := Slice;
Formula := Transform.Transform(Selector);
// Specify the Linear Regression (OLS Estimation) calculation method
Formula.Kind := MsFormulaKind.LinearRegression;
// Set the calendar frequency of calculation
Formula.Level := DimCalendarLevel.Year;
// Get the object to set up linear regression
Linear := Formula.Method As IMsLinearRegressionTransform;
// Determine autoregression order
Ar[0] := 2;
Ar[1] := 4;
Linear.ARMA.OrderAR := Ar;
// Use automatic constant estimation
Linear.ConstantMode := InterceptMode.AutoEstimate;
// Add factor with the TSDB data source to model
TransVar := Transform.Inputs.Add(Stub);
Tree := TransVar.SlicesTree(TransVar);
Slice := Tree.CreateSlice(2);
// Get the factor as an expression element
TermInfo := Transform.CreateTermInfo;
TermInfo.Slice := Slice;
// Specify linear regression calculation formula
Linear.Explanatories.Add.Expression.AsString := TermInfo.TermInnerText;
// Specify model calculation periods
Period := Transform.Period;
Period.IdentificationStartDate := DateTime.ComposeDay(2000, 1, 1);
Period.IdentificationEndDate := DateTime.ComposeDay(2014, 12, 31);
Period.ForecastStartDate := DateTime.ComposeDay(2015, 1, 1);
Period.ForecastEndDate := DateTime.ComposeDay(2020, 12, 31);
// Save the model to the repository
(Model As IMetabaseObject).Save;
End Sub ModelAttr;
Imports Prognoz.Platform.Interop.Cubes;
Imports Prognoz.Platform.Interop.Dimensions;
Imports Prognoz.Platform.Interop.Ms;
Imports Prognoz.Platform.Interop.Stat;
…
Public Shared Sub Main(Params: StartParams);
Var
Mb: IMetabase;
CrInf: IMetabaseObjectCreateInfo;
Model: IMsModel;
Transform: IMsFormulaTransform;
TransformVarables: IMsFormulaTransformVariables;
RubrDescr: IMetabaseObjectDescriptor;
Stub: IVariableStub;
TransVar: IMsFormulaTransformVariable;
Tree: IMsFormulaTransformSlicesTree;
Slice: IMsFormulaTransformSlice;
Selector: IMsFormulaTransformSelector;
Formula: IMsFormula;
Linear: IMsLinearRegressionTransform;
Ar: Array[0..1] Of Integer;
TermInfo: IMsFormulaTermInfo;
Period: IMsModelPeriod;
Begin
Mb := Params.Metabase;
// Specify basic parameters of the model as a repository object
CrInf := Mb.CreateCreateInfo();
CrInf.ClassId := MetabaseObjectClass.KE_CLASS_MSMODEL As integer;
// Specify model identifier
CrInf.Id := Mb.GenerateId("MODEL_LINEAR_REGRESSION", Mb.ItemById["MS"].Key);
// Specify model name
CrInf.Name := "Model of linear regression";
// Specify modeling container which will contain the model
CrInf.Parent := Mb.ItemById["MS"];
// Create a model
Model := Mb.CreateObject(CrInf).Edit() As IMsModel;
// Get the object to set up model parameters
Transform := Model.Transform;
// Get the object to work with output variable
TransformVarables := Transform.Outputs;
// Get time series database (TSDB)
RubrDescr := Mb.ItemById["TSDB"];
// Cast the obtained TSDB to the abstract data source
Stub := RubrDescr.Bind() As IVariableStub;
// Use TSDB as a data source of output variable
TransVar := TransformVarables.Add(Stub);
// Specify output variable slice
Tree := TransVar.SlicesTree[TransVar];
Slice := Tree.CreateSlice(1);
// Get model settings for output variable slice
Selector := Transform.CreateSelector();
Selector.Slice := Slice;
Formula := Transform.Transform[Selector];
// Specify the Linear Regression (OLS Estimation) calculation method
Formula.Kind := MsFormulaKind.mfkLinearRegression;
// Set the calendar frequency of calculation
Formula.Level := DimCalendarLevel.dclYear;
// Get the object to set up linear regression
Linear := Formula.Method As IMsLinearRegressionTransform;
// Determine autoregression order
Ar[0] := 2;
Ar[1] := 4;
Linear.ARMA.OrderAR := Ar;
// Use automatic constant estimation
Linear.ConstantMode := InterceptMode.imAutoEstimate;
// Add factor with the TSDB data source to model
TransVar := Transform.Inputs.Add(Stub);
Tree := TransVar.SlicesTree[TransVar];
Slice := Tree.CreateSlice(2);
// Get the factor as an expression element
TermInfo := Transform.CreateTermInfo();
TermInfo.Slice := Slice;
// Specify linear regression calculation formula
Linear.Explanatories.Add().Expression.AsString := TermInfo.TermInnerText;
// Specify model calculation periods
Period := Transform.Period;
Period.IdentificationStartDate := DateTime.Parse("2000, 1, 1");
Period.IdentificationEndDate := DateTime.Parse("2014, 12, 31");
Period.ForecastStartDate := DateTime.Parse("2015, 1, 1");
Period.ForecastEndDate := DateTime.Parse("2020, 12, 31");
// Save the model to the repository
(Model As IMetabaseObject).Save();
End Sub;
After executing the example the model that uses variables on attributes is created in the MS modeling container. To calculate the model the linear regression method (OLS estimation) method is used with the following settings:
The model contains one factor.
The value of the constant is estimated automatically.
Values of autoregression orders: "2, 4".
Annual calculation frequency is used.
Sample period: start - "2000", end - "2014".
Forecasting period: start - "2015", end - "2020'.
See also: