Creating a Model with Variables Being Repository Objects

Contents

Description

Requirements

Fore Example

Fore.NET Example

Result of the Fore and Fore.NET Examples Execution

Description

Consider the example of creating a model by variables being the object repository, which is used to calculate linear regression (OLS estimation) method.

Requirements

Executing the example requires that the repository contains a modeling container with the MS_DEFAULT identifier. This modeling container must contain variables with OUTPUT_VARIABLE and FACTOR_VARIABLE identifiers.

Add links to the Cubes, Dimensions, Metabase, Ms, Stat system assemblies.

Fore Example

Sub ModelVariable;
Var
    Mb: IMetabase;
    CrInf: IMetabaseObjectCreateInfo;
    Model: IMsModel;
    Transform: IMsFormulaTransform;
    TransformVarables: IMsFormulaTransformVariables;
    Stub: IVariableStub;
    TransVar: IMsFormulaTransformVariable;
    Tree: IMsFormulaTransformSlicesTree;
    Slice: IMsFormulaTransformSlice;
    Selector: IMsFormulaTransformSelector;
    Formula: IMsFormula;
    Linear: IMsLinearRegressionTransform;
    Ar: Array[0..1Of Integer;
    TermInfo: IMsFormulaTermInfo;
    Period: IMsModelPeriod;
Begin
    Mb := MetabaseClass.Active;
    // Specify basic parameters of the model as a repository object
    CrInf := Mb.CreateCreateInfo;
    CrInf.ClassId := MetabaseObjectClass.KE_CLASS_MSMODEL;
    // Specify model identifier
    CrInf.Id := Mb.GenerateId("MODEL_LINEAR_REGRESSION", Mb.ItemById("MS_DEFAULT").Key);
    // Specify model name
    CrInf.Name := "Model of linear regression";
    // Specify modeling container which will contain the model
    CrInf.Parent := Mb.ItemById("MS_DEFAULT");
    // Create a model
    Model := Mb.CreateObject(CrInf).Edit As IMsModel;
    // Get object to set up model parameters
    Transform := Model.Transform;
    // Get object to work with output variable
    TransformVarables := Transform.Outputs;
    // Cast the OUTPUT_VARIABLE variable to the abstract data source
    Stub := Mb.ItemByIdNamespace("OUTPUT_VARIABLE", Mb.GetObjectKeyById("MS_DEFAULT")).Bind As IVariableStub;
    // Use the OUTPUT_VARIABLE variable as the output variable
    TransVar := TransformVarables.Add(Stub);
    // Specify output variable slice
    Tree := TransVar.SlicesTree(TransVar);
    Slice := Tree.CreateSlice(1);
    // Get model settings for output variable slice
    Selector := Transform.CreateSelector;
    Selector.Slice := Slice;
    Formula := Transform.Transform(Selector);
    // Specify the Linear Regression (OLS Estimation) calculation method
    Formula.Kind := MsFormulaKind.LinearRegression;
    // Set the calendar frequency of calculation
    Formula.Level := DimCalendarLevel.Year;
    // Get the object to set up linear regression
    Linear := Formula.Method As IMsLinearRegressionTransform;
    // Determine autoregression order
    Ar[0] := 2;
    Ar[1] := 4;
    Linear.ARMA.OrderAR := Ar;
    // Do not use the constant
    Linear.ConstantMode := InterceptMode.None;
    // Cast the FACTOR_VARIABLE variable to the abstract data source
    Stub := Mb.ItemByIdNamespace("FACTOR_VARIABLE", Mb.GetObjectKeyById("MS_DEFAULT")).Bind As IVariableStub;
    // Add the FACTOR_VARIABLE variable to the model as the factor
    TransVar := Transform.Inputs.Add(Stub);
    Tree := TransVar.SlicesTree(TransVar);
    Slice := Tree.CreateSlice(1);
    // Get the factor as an expression element
    TermInfo := Transform.CreateTermInfo;
    TermInfo.Slice := Slice;
    // Specify linear regression calculation formula
    Linear.Explanatories.Add.Expression.AsString := TermInfo.TermInnerText;
    // Specify model calculation periods
    Period := Transform.Period;
    Period.IdentificationStartDate := DateTime.ComposeDay(200011);
    Period.IdentificationEndDate := DateTime.ComposeDay(20141231);
    Period.ForecastStartDate := DateTime.ComposeDay(201511);
    Period.ForecastEndDate := DateTime.ComposeDay(20201231);
    // Save the model to the repository
    (Model As IMetabaseObject).Save;
End Sub ModelVariable;

Fore.NET Example

Imports Prognoz.Platform.Interop.Cubes;
Imports Prognoz.Platform.Interop.Dimensions;
Imports Prognoz.Platform.Interop.Ms;
Imports Prognoz.Platform.Interop.Stat;

Public Shared Sub Main(Params: StartParams);
Var
    Mb: IMetabase;
    CrInf: IMetabaseObjectCreateInfo;
    Model: IMsModel;
    Transform: IMsFormulaTransform;
    TransformVarables: IMsFormulaTransformVariables;
    Stub: IVariableStub;
    TransVar: IMsFormulaTransformVariable;
    Tree: IMsFormulaTransformSlicesTree;
    Slice: IMsFormulaTransformSlice;
    Selector: IMsFormulaTransformSelector;
    Formula: IMsFormula;
    Linear: IMsLinearRegressionTransform;
    Ar: Array[0..1Of Integer;
    TermInfo: IMsFormulaTermInfo;
    Period: IMsModelPeriod;
Begin
    Mb := Params.Metabase;
    // Specify basic parameters of the model as a repository object
    CrInf := Mb.CreateCreateInfo();
    CrInf.ClassId := MetabaseObjectClass.KE_CLASS_MSMODEL As integer;
    // Specify model identifier
    CrInf.Id := Mb.GenerateId("MODEL_LINEAR_REGRESSION", Mb.ItemById["MS_DEFAULT"].Key);
    // Specify model name
    CrInf.Name := "Model of linear regression";
    // Specify modeling container which will contain the model
    CrInf.Parent := Mb.ItemById["MS_DEFAULT"];
    // Create a model
    Model := Mb.CreateObject(CrInf).Edit() As IMsModel;
    // Get object to set up model parameters
    Transform := Model.Transform;
    // Get object to work with output variable
    TransformVarables := Transform.Outputs;
    // Cast the OUTPUT_VARIABLE variable to the abstract data source
    Stub := Mb.ItemByIdNamespace["OUTPUT_VARIABLE", Mb.GetObjectKeyById("MS_DEFAULT")].Bind() As IVariableStub;
    // Use TSDB as a data source of output variable
    TransVar := TransformVarables.Add(Stub);
    // Specify output variable slice
    Tree := TransVar.SlicesTree[TransVar];
    Slice := Tree.CreateSlice(1);
    // Get model settings for output variable slice
    Selector := Transform.CreateSelector();
    Selector.Slice := Slice;
    Formula := Transform.Transform[Selector];
    // Specify the Linear Regression (OLS Estimation) calculation method
    Formula.Kind := MsFormulaKind.mfkLinearRegression;
    // Set the calendar frequency of calculation
    Formula.Level := DimCalendarLevel.dclYear;
    // Get the object to set up linear regression
    Linear := Formula.Method As IMsLinearRegressionTransform;
    // Determine autoregression order
    Ar[0] := 2;
    Ar[1] := 4;
    Linear.ARMA.OrderAR := Ar;
    // Do not use the constant
    Linear.ConstantMode := InterceptMode.imNone;
    // Cast the FACTOR_VARIABLE variable to the abstract data source
    Stub := Mb.ItemByIdNamespace["FACTOR_VARIABLE", Mb.GetObjectKeyById("MS_DEFAULT")].Bind() As IVariableStub;
    // Add the FACTOR_VARIABLE variable to the model as the factor
    TransVar := Transform.Inputs.Add(Stub);
    Tree := TransVar.SlicesTree[TransVar];
    Slice := Tree.CreateSlice(1);
    // Get the factor as an expression element
    TermInfo := Transform.CreateTermInfo();
    TermInfo.Slice := Slice;
    // Specify linear regression calculation formula
    Linear.Explanatories.Add().Expression.AsString := TermInfo.TermInnerText;
    // Specify model calculation periods
    Period := Transform.Period;
    Period.IdentificationStartDate := DateTime.Parse("2000, 1, 1");
    Period.IdentificationEndDate := DateTime.Parse("2014, 12, 31");
    Period.ForecastStartDate := DateTime.Parse("2015, 1, 1");
    Period.ForecastEndDate := DateTime.Parse("2020, 12, 31");
    // Save the model to the repository
    (Model As IMetabaseObject).Save();
End Sub;

Result of the Fore and Fore.NET Examples Execution

After executing the example in the MS_DEFAULT modeling container the model which uses variables being repository objects will be created. To calculate the model the linear regression method (OLS estimation) method is used with the following settings:

See also:

Examples | IMsModel