OptimalValue: Double;
OptimalValue: double;
The OptimalValue property returns the value corresponding to optimal solution of criterion function.
The value is available only after criterion problem calculation.
To execute the example, add a link to the Cp system assembly.
Sub UserProc;
Var
TargetAdj: ICpTargetAdjustment;
T: Integer;
RetroX1, RetroU: Array Of Double;
InitApproximation, Ser: Array Of Double;
i: Integer;
VarsP: ITargetPhaseVariablesArray;
VrblP: ITargetPhaseVariable;
VarConstrs: IVarTargetConstraintsArray;
VarConstr: IVarTargetConstraint;
VarsC: ITargetControlVariablesArray;
VrblC: ITargetControlVariable;
Constraints: ITargetConstraints;
Constraint: ITargetConstraint;
ConInfoArray: ITargetConstraintInfoArray;
ConInfo: ITargetConstraintInfo;
Res: ITargetResults;
Begin
TargetAdj := New TargetAdjustment.Create;
// Set period
T := 6;
// Create variables with retrospective
RetroX1 := New Double[T];
RetroU := New Double[T];
Ser := New Double[T];
// Create an array of initial approximations
InitApproximation := New Double[T];
// Set initial variable values
For i := 0 To T - 1 Do
RetroX1[i] := 0.8 + i / 5;
RetroU[i] := 0.9 + i / 10;
End For;
// Get phase variables
VarsP := TargetAdj.PhaseVariables;
// Add the x1 phase variable
VrblP := VarsP.Add("x1");
VrblP.Name := "x1";
// Set retrospective values
VrblP.Retrospective := RetroX1;
// Set order of variables
VrblP.CoefficientsOrder := "x1[t];x1[t-1]";
// Get phase variable constraints
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
// Create a new constraint
VarConstr := VarConstrs.Add;
// Set borders
VarConstr.LowerBound := -10 - i / 100;
VarConstr.UpperBound := 10 + i / 100;
// Specify the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set frequency equation
VrblP.FunctionExpression := "0.3 * x1[t-1] + 0.1 * u[t-1] * x1[t-1] *u[t]";
// Get controlling variables
VarsC := TargetAdj.ControlVariables;
// Add the u controlling variable
VrblC := VarsC.Add("u");
VrblC.Name := "u";
// Set retrospective values
VrblC.Retrospective := RetroU;
// Set order of coefficients
VrblC.CoefficientsOrder := "u[t];u[t-1]";
// Set values of initial approximations
For i := 0 To T - 1 Do
InitApproximation[i] := 1.2 + (i + 1) / 100;
End For;
VrblC.InitApproximation := InitApproximation;
// Get controlling variable constraints
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
// Add a constraint
VarConstr := VarConstrs.Add;
// Set constraint borders
VarConstr.LowerBound := 1;
VarConstr.UpperBound := 2;
// Set the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set criterion trajectory
For i := 0 To T - 1 Do
ser[i] := i;
End For;
TargetAdj.TargetTrajectory := Ser;
// Set criterion function
TargetAdj.CriterionFunction := "x1[t] + u[t-1] - u[t] ";
// Set number of iterations
TargetAdj.MaxIterationsCount := 25000;
// Set accuracy of solution
TargetAdj.Tolerance := 0.00001;
// Get non-linear constraints of criterion function
Constraints := TargetAdj.Constraints;
// Add a non-linear constraint
Constraint := Constraints.Add;
// Set non-linear constraint expression
Constraint.Expression := "u[t] + x1[t]*0.001";
ConInfoArray := Constraint.Constraints;
For i := 0 To T - 1 Do
conInfo := ConInfoArray.Add;
conInfo.TimeMoment := i;
conInfo.LowerBound := -1.5555-i;
coninfo.UpperBound := 1.55555 + i;
coninfo.LowerBoundFixed := False;
coninfo.UpperBoundFixed := False;
End For;
// Set problem type
TargetAdj.AutoSearchType := TargetAutoSearchType.MinError;
// Set number of cycles
TargetAdj.AutoAdjustMaxIter := 10;
// Set allowed accuracy
TargetAdj.AutoAdjustSatisfactoryTolerance := 1.01;
// Set number of constraints removed in one iteration
TargetAdj.AutoAdjustRemoveCount := 2;
// Execute calculation
Res := TargetAdj.Evaluate(T) As ITargetResults;
// If calculation is executed without errors, display results in the console
If res.Status = 0 Then
// Display optimal value
Debug.WriteLine("Optimal value:");
Debug.Indent;
Debug.WriteLine(res.OptimalValue);
Debug.Unindent;
// Display optimal trajectory of criterion function
Debug.WriteLine("Optimal trajectory of criterion function:");
Debug.Indent;
For i := 0 To Res.CriterionFunctionTrajectory.Length - 1 Do
Debug.WriteLine(Res.CriterionFunctionTrajectory[i]);
End For;
Debug.Unindent;
// Display non-linear constraints
Debug.WriteLine("Value corresponding to optimal solution");
Debug.Indent;
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item(i);
If conInfo.Include Then
Debug.WriteLine(conInfo.OptimalValue);
End If;
End For;
Debug.Unindent;
// Display values of lower constraint limit
Debug.WriteLine("Values of lower limit; Status");
Debug.Indent;
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item(i);
If conInfo.Include Then
Debug.Write(conInfo.LowerBound.ToString + "; " + #9);
Debug.WriteLine(StatusToStr(conInfo.LowerConstraintStatus));
End If;
End For;
Debug.Unindent;
Debug.WriteLine("Values of Lagrange multiplier for lower limit");
Debug.Indent;
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item(i);
If conInfo.Include Then
Debug.WriteLine(conInfo.LowerBoundLagrangeMultiplier);
End If;
End For;
Debug.Unindent;
Debug.WriteLine("Values of upper limit; Status");
Debug.Indent;
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item(i);
If conInfo.Include Then
Debug.Write(conInfo.UpperBound.ToString + "; " + #9);
Debug.WriteLine(StatusToStr(conInfo.UpperConstraintStatus));
End If;
End For;
Debug.Unindent;
Debug.WriteLine("Values of Lagrange multiplier for upper limit");
Debug.Indent;
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item(i);
If conInfo.Include Then
Debug.WriteLine(conInfo.UpperBoundLagrangeMultiplier);
End If;
End For;
Debug.Unindent;
// If calculation is completed with error, display its text
Else
Debug.WriteLine(res.ErrorMsg);
End If;
End Sub UserProc;
// Function for displaying status
Function StatusToStr(Status: TargetConstraintStatusType): String;
Var
s: String;
Begin
Select Case Status
Case TargetConstraintStatusType.Disabled: s := "Disabled";
Case TargetConstraintStatusType.NotReached: s := "Not reached";
Case TargetConstraintStatusType.Reached: s := "Reached";
End Select;
Return s;
End Function StatusToStr;
After executing the example optimization problem parameters are set, the problem is calculated, results are displayed in the console.
The requirements and result of the Fore.NET example execution match with those in the Fore example.
Imports Prognoz.Platform.Interop.Cp;
…
Public Shared Sub Main(Params: StartParams);
Var
TargetAdj: ICpTargetAdjustment;
T: Integer;
RetroX1, RetroU: Array Of Double;
InitApproximation, Ser: Array Of Double;
i: Integer;
VarsP: ITargetPhaseVariablesArray;
VrblP: ITargetPhaseVariable;
VarConstrs: IVarTargetConstraintsArray;
VarConstr: IVarTargetConstraint;
VarsC: ITargetControlVariablesArray;
VrblC: ITargetControlVariable;
Constraints: ITargetConstraints;
Constraint: ITargetConstraint;
ConInfoArray: ITargetConstraintInfoArray;
ConInfo: ITargetConstraintInfo;
Res: ITargetResults;
Begin
TargetAdj := New TargetAdjustment.Create();
// Set period
T := 6;
// Create variables with retrospective
RetroX1 := New Double[T];
RetroU := New Double[T];
Ser := New Double[T];
// Create an array of initial approximations
InitApproximation := New Double[T];
// Set initial variable values
For i := 0 To T - 1 Do
RetroX1[i] := 0.8 + i / 5;
RetroU[i] := 0.9 + i / 10;
End For;
// Get phase variables
VarsP := TargetAdj.PhaseVariables;
// Add the x1 phase variable
VrblP := VarsP.Add("x1");
VrblP.Name := "x1";
// Set retrospective values
VrblP.Retrospective := RetroX1;
// Set order of variables
VrblP.CoefficientsOrder := "x1[t];x1[t-1]";
// Get phase variable constraints
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
// Create a new constraint
VarConstr := VarConstrs.Add();
// Set borders
VarConstr.LowerBound := -10 - i / 100;
VarConstr.UpperBound := 10 + i / 100;
// Specify the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set frequency equation
VrblP.FunctionExpression := "0.3 * x1[t-1] + 0.1 * u[t-1] * x1[t-1] *u[t]";
// Get controlling variables
VarsC := TargetAdj.ControlVariables;
// Add the u controlling variable
VrblC := VarsC.Add("u");
VrblC.Name := "u";
// Set retrospective values
VrblC.Retrospective := RetroU;
// Set order of coefficients
VrblC.CoefficientsOrder := "u[t];u[t-1]";
// Set values of initial approximations
For i := 0 To T - 1 Do
InitApproximation[i] := 1.2 + (i + 1) / 100;
End For;
VrblC.InitApproximation := InitApproximation;
// Get controlling variable constraints
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
// Add a constraint
VarConstr := VarConstrs.Add();
// Set constraint borders
VarConstr.LowerBound := 1;
VarConstr.UpperBound := 2;
// Set the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set criterion trajectory
For i := 0 To T - 1 Do
ser[i] := i;
End For;
TargetAdj.TargetTrajectory := Ser;
// Set criterion function
TargetAdj.CriterionFunction := "x1[t] + u[t-1] - u[t] ";
// Set number of iterations
TargetAdj.MaxIterationsCount := 25000;
// Set accuracy of solution
TargetAdj.Tolerance := 0.00001;
// Get non-linear constraints of criterion function
Constraints := TargetAdj.Constraints;
// Add a non-linear constraint
Constraint := Constraints.Add();
// Set non-linear constraint expression
Constraint.Expression := "u[t] + x1[t]*0.001";
ConInfoArray := Constraint.Constraints;
For i := 0 To T - 1 Do
conInfo := ConInfoArray.Add();
conInfo.TimeMoment := i;
conInfo.LowerBound := -1.5555-i;
coninfo.UpperBound := 1.55555 + i;
coninfo.LowerBoundFixed := False;
coninfo.UpperBoundFixed := False;
End For;
// Set problem type
TargetAdj.AutoSearchType := TargetAutoSearchType.tastMinError;
// Set number of cycles
TargetAdj.AutoAdjustMaxIter := 10;
// Set allowed accuracy
TargetAdj.AutoAdjustSatisfactoryTolerance := 1.01;
// Set number of constraints removed in one iteration
TargetAdj.AutoAdjustRemoveCount := 2;
// Execute calculation
Res := TargetAdj.Evaluate(T) As ITargetResults;
// If calculation is executed without errors, display results in the console
If res.Status = 0 Then
// Display optimal value
System.Diagnostics.Debug.WriteLine("Optimal value:");
System.Diagnostics.Debug.Indent();
System.Diagnostics.Debug.WriteLine(res.OptimalValue);
System.Diagnostics.Debug.Unindent();
// Display optimal trajectory of criterion function
System.Diagnostics.Debug.WriteLine("Optimal trajectory of criterion function:");
System.Diagnostics.Debug.Indent();
For i := 0 To Res.CriterionFunctionTrajectory.Length - 1 Do
System.Diagnostics.Debug.WriteLine(Res.CriterionFunctionTrajectory.GetValue(i));
End For;
System.Diagnostics.Debug.Unindent();
// Display non-linear constraints
System.Diagnostics.Debug.WriteLine("Value corresponding to optimal solution");
System.Diagnostics.Debug.Indent();
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item[i];
If conInfo.Include Then
System.Diagnostics.Debug.WriteLine(conInfo.OptimalValue);
End If;
End For;
System.Diagnostics.Debug.Unindent();
// Display values of lower constraint limit
System.Diagnostics.Debug.WriteLine("Values of lower limit; Status");
System.Diagnostics.Debug.Indent();
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item[i];
If conInfo.Include Then
System.Diagnostics.Debug.Write(conInfo.LowerBound.ToString() + "; " + char.ConvertFromUtf32(9));
System.Diagnostics.Debug.WriteLine(StatusToStr(conInfo.LowerConstraintStatus));
End If;
End For;
System.Diagnostics.Debug.Unindent();
System.Diagnostics.Debug.WriteLine("Values of Lagrange multiplier for lower border");
System.Diagnostics.Debug.Indent();
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item[i];
If conInfo.Include Then
System.Diagnostics.Debug.WriteLine(conInfo.LowerBoundLagrangeMultiplier);
End If;
End For;
System.Diagnostics.Debug.Unindent();
System.Diagnostics.Debug.WriteLine("Values of upper limit; Status");
System.Diagnostics.Debug.Indent();
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item[i];
If conInfo.Include Then
System.Diagnostics.Debug.Write(conInfo.UpperBound.ToString() + "; " + char.ConvertFromUtf32(9));
System.Diagnostics.Debug.WriteLine(StatusToStr(conInfo.UpperConstraintStatus));
End If;
End For;
System.Diagnostics.Debug.Unindent();
System.Diagnostics.Debug.WriteLine("Values of Lagrange multiplier for upper limit");
System.Diagnostics.Debug.Indent();
For i := 0 To ConInfoArray.Count - 1 Do
conInfo := ConInfoArray.Item[i];
If conInfo.Include Then
System.Diagnostics.Debug.WriteLine(conInfo.UpperBoundLagrangeMultiplier);
End If;
End For;
System.Diagnostics.Debug.Unindent();
// If calculation is completed with error, display its text
Else
System.Diagnostics.Debug.WriteLine(res.ErrorMsg);
End If;
End Sub;
// Function for displaying status
Public Shared Function StatusToStr(Status: TargetConstraintStatusType): String;
Var
s: String;
Begin
Select Case Status
Case TargetConstraintStatusType.tcstDisabled: s := "Disabled";
Case TargetConstraintStatusType.tcstNotReached: s := "Not reached";
Case TargetConstraintStatusType.tcstReached: s := "Reached";
End Select;
Return s;
End Function StatusToStr;
See also: