CalcWithNonLinConstraints: Boolean;
CalcWithNonLinConstraints: boolean;
The CalcWithNonLinConstraints property determines whether to use non-linear constraints in calculation.
Available values:
True. Default value. The calculation uses non-linear constraints set by the ICpTargetAdjustment.Constraints property.
False. Non-linear constraints are not used in the calculation.
Add a link to the Cp system assembly.
Sub UserProc;
Var
TargetAdj: ICpTargetAdjustment;
T: Integer;
RetroX1, RetroX2, RetroU, RetroV: Array Of Double;
InitApproximation, ValuesI, ValuesJ: Array Of Double;
i, j: Integer;
VarsP: ITargetPhaseVariablesArray;
VrblP: ITargetPhaseVariable;
VarConstrs: IVarTargetConstraintsArray;
VarConstr: IVarTargetConstraint;
VarsC: ITargetControlVariablesArray;
VrblC: ITargetControlVariable;
Ser: Array[4] Of Double;
Res: ITargetResults;
Val: Double;
Begin
TargetAdj := New TargetAdjustment.Create;
// Set period
T := 6;
// Create variables with retrospective
RetroX1 := New Double[T];
RetroX2 := New Double[T];
RetroU := New Double[T];
RetroV := New Double[T];
// Create an array of initial approximations
InitApproximation := New Double[T];
// Set initial variable values
For i := 0 To T - 1 Do
RetroX1[i] := 0.8 + i / 5;
RetroX2[i] := 0.85 + i / 4;
RetroU[i] := 0.9 + i / 10;
RetroV[i] := 0.95 + i / 10;
End For;
// Get phase variables
VarsP := TargetAdj.PhaseVariables;
// Add the x1 phase variable
VrblP := VarsP.Add("x1");
VrblP.Name := "x1";
// Set retrospective values
VrblP.Retrospective := RetroX1;
// Set order of variables
VrblP.CoefficientsOrder := "x1[t];x1[t-1]";
// Get phase variable constraints
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
// Create a new constraint
VarConstr := VarConstrs.Add;
// Set borders
VarConstr.LowerBound := -10 - i / 100;
VarConstr.UpperBound := 10 + i / 100;
// Specify the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set frequency equation
VrblP.FunctionExpression := "0.3 * x1[t-1] + 0.1 * x2[t-1] + u[t-1] * x1[t-1] *x2[t-1]";
// Add phase variable x2
VrblP := VarsP.Add("x2");
VrblP.Name := "x2";
VrblP.Retrospective := RetroX2;
VrblP.CoefficientsOrder := "x2[t];x2[t-1]";
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
VarConstr := VarConstrs.Add;
VarConstr.LowerBound := -100-i;
VarConstr.UpperBound := 100+i;
VarConstr.TimeMoment := i;
End For;
VrblP.FunctionExpression := "(-0.2) * x1[t-1] + 0.4 *x2[t-1] + (x1[t-1] * x2[t-1])/(v[t]+1)";
// Get controlling variables
VarsC := TargetAdj.ControlVariables;
// Add the u controlling variable
VrblC := VarsC.Add("u");
VrblC.Name := "u";
// Set retrospective values
VrblC.Retrospective := RetroU;
// Set order of coefficients
VrblC.CoefficientsOrder := "u[t];u[t-1]";
// Set values of initial approximations
For i := 0 To T - 1 Do
InitApproximation[i] := 1.2 + (i + 1) / 100;
End For;
VrblC.InitApproximation := InitApproximation;
// Get controlling variable constraints
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
// Add a constraint
VarConstr := VarConstrs.Add;
// Set constraint borders
VarConstr.LowerBound := 1;
VarConstr.UpperBound := 2;
// Set the current moment of time
VarConstr.TimeMoment := i;
End For;
// Add controlling variable v
VrblC := VarsC.Add("v");
VrblC.Name := "v";
VrblC.Retrospective := RetroV;
VrblC.CoefficientsOrder := "v[t];v[t-1]";
For i:=0 To T-1 Do
InitApproximation[i] := 1.5+ (i+1)/100;
End For;
VrblC.InitApproximation := InitApproximation;
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
VarConstr := VarConstrs.Add;
VarConstr.LowerBound := 0.8;
VarConstr.UpperBound := 7;
VarConstr.TimeMoment := i;
End For;
// Set criterion trajectory
ser[0] := 1;
ser[1] := 2;
ser[2] := 3;
ser[3] := 4;
TargetAdj.TargetTrajectory := Ser;
// Set criterion function
TargetAdj.CriterionFunction := "x1[t] + x2[t-1] - u[t]";
// Set number of iterations
TargetAdj.MaxIterationsCount := 25000;
// Set accuracy of solution
TargetAdj.Tolerance := 0.00001;
// Specify that do not use non-linear constraints in calculation
TargetAdj.CalcWithNonLinConstraints := False;
// Set problem type
TargetAdj.AutoSearchType := TargetAutoSearchType.MinError;
// Set number of cycles
TargetAdj.AutoAdjustMaxIter := 10;
// Set allowed accuracy
TargetAdj.AutoAdjustSatisfactoryTolerance := 1.01;
// Set number of constraints removed in one iteration
TargetAdj.AutoAdjustRemoveCount := 2;
// Execute calculation
Res := TargetAdj.Evaluate(T) As ITargetResults;
// If calculation is executed without errors, display results in the console
If res.Status = 0 Then
// Display optimal value
Debug.WriteLine("Optimal value:");
Debug.Indent;
Debug.WriteLine(res.OptimalValue);
Debug.Unindent;
// Display controlling variable values
For j := 1 To VarsC.Count Do
VrblC := VarsC.Item(j - 1);
Debug.WriteLine("Controlling variable values '" + VrblC.Id + "':");
Debug.Indent;
For i := 1 To T Do
Val := Res.VarValues(VrblC.Id)[i - 1];
Debug.WriteLine(i.ToString + ": " + Val.ToString);
End For;
Debug.Unindent;
End For;
// Display values of phase variables
For j := 1 To VarsP.Count Do
VrblP := VarsP.Item(j - 1);
Debug.WriteLine("Phase variable values '" + VrblP.Id + "':");
Debug.Indent;
For i := 1 To T Do
Val := Res.VarValues(VrblP.Id)[i - 1];
Debug.WriteLine(i.ToString + ": " + Val.ToString);
End For;
Debug.Unindent;
End For;
// Display optimal trajectory of criterion function
Debug.WriteLine("Optimal trajectory of criterion function:");
Debug.Indent;
For i := 0 To Res.CriterionFunctionTrajectory.Length - 1 Do
Debug.WriteLine(Res.CriterionFunctionTrajectory[i]);
End For;
Debug.Unindent;
// If calculation is completed with error, display its text
Else
Debug.WriteLine(res.ErrorMsg);
End If;
End Sub UserProc;
After executing the example optimization problem parameters are set, the problem is calculated, results are displayed in the console.
The requirements and result of the Fore.NET example execution match with those in the Fore example.
Imports Prognoz.Platform.Interop.Cp;
…
Public Shared Sub Main(Params: StartParams);
Var
TargetAdj: ICpTargetAdjustment;
T: Integer;
RetroX1, RetroX2, RetroU, RetroV: Array Of Double;
InitApproximation, ValuesI, ValuesJ: Array Of Double;
i, j: Integer;
VarsP: ITargetPhaseVariablesArray;
VrblP: ITargetPhaseVariable;
VarConstrs: IVarTargetConstraintsArray;
VarConstr: IVarTargetConstraint;
VarsC: ITargetControlVariablesArray;
VrblC: ITargetControlVariable;
Ser: Array[4] Of Double;
Res: ITargetResults;
Val: Double;
Begin
TargetAdj := New TargetAdjustment.Create();
// Set period
T := 6;
// Create variables with retrospective
RetroX1 := New Double[T];
RetroX2 := New Double[T];
RetroU := New Double[T];
RetroV := New Double[T];
// Create an array of initial approximations
InitApproximation := New Double[T];
// Set initial variable values
For i := 0 To T - 1 Do
RetroX1[i] := 0.8 + i / 5;
RetroX2[i] := 0.85 + i / 4;
RetroU[i] := 0.9 + i / 10;
RetroV[i] := 0.95 + i / 10;
End For;
// Get phase variables
VarsP := TargetAdj.PhaseVariables;
// Add the x1 phase variable
VrblP := VarsP.Add("x1");
VrblP.Name := "x1";
// Set retrospective values
VrblP.Retrospective := RetroX1;
// Set order of variables
VrblP.CoefficientsOrder := "x1[t];x1[t-1]";
// Get phase variable constraints
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
// Create a new constraint
VarConstr := VarConstrs.Add();
// Set borders
VarConstr.LowerBound := -10 - i / 100;
VarConstr.UpperBound := 10 + i / 100;
// Specify the current moment of time
VarConstr.TimeMoment := i;
End For;
// Set frequency equation
VrblP.FunctionExpression := "0.3 * x1[t-1] + 0.1 * x2[t-1] + u[t-1] * x1[t-1] *x2[t-1]";
// Add phase variable x2
VrblP := VarsP.Add("x2");
VrblP.Name := "x2";
VrblP.Retrospective := RetroX2;
VrblP.CoefficientsOrder := "x2[t];x2[t-1]";
VarConstrs := VrblP.Constraints;
For i := 0 To T - 1 Do
VarConstr := VarConstrs.Add();
VarConstr.LowerBound := -100-i;
VarConstr.UpperBound := 100 + i;
VarConstr.TimeMoment := i;
End For;
VrblP.FunctionExpression := "(-0.2) * x1[t-1] + 0.4 *x2[t-1] + (x1[t-1] * x2[t-1])/(v[t]+1)";
// Get controlling variables
VarsC := TargetAdj.ControlVariables;
// Add the u controlling variable
VrblC := VarsC.Add("u");
VrblC.Name := "u";
// Set retrospective values
VrblC.Retrospective := RetroU;
// Set order of coefficients
VrblC.CoefficientsOrder := "u[t];u[t-1]";
// Set values of initial approximations
For i := 0 To T - 1 Do
InitApproximation[i] := 1.2 + (i + 1) / 100;
End For;
VrblC.InitApproximation := InitApproximation;
// Get controlling variable constraints
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
// Add a constraint
VarConstr := VarConstrs.Add();
// Set constraint borders
VarConstr.LowerBound := 1;
VarConstr.UpperBound := 2;
If (0 = i) Then
VarConstr.UpperBoundFixed := True;
End If;
// Set the current moment of time
VarConstr.TimeMoment := i;
End For;
// Add controlling variable v
VrblC := VarsC.Add("v");
VrblC.Name := "v";
VrblC.Retrospective := RetroV;
VrblC.CoefficientsOrder := "v[t];v[t-1]";
For i:=0 To T-1 Do
InitApproximation[i] := 1.5+ (i+1)/100;
End For;
VrblC.InitApproximation := InitApproximation;
VarConstrs := VrblC.Constraints;
For i := 0 To T - 1 Do
VarConstr := VarConstrs.Add();
VarConstr.LowerBound := 0.8;
If (0 = i) Then
VarConstr.LowerBoundFixed := True;
End If;
VarConstr.UpperBound := 7;
VarConstr.TimeMoment := i;
End For;
// Set criterion trajectory
ser[0] := 1;
ser[1] := 2;
ser[2] := 3;
ser[3] := 4;
TargetAdj.TargetTrajectory := Ser;
// Set criterion function
TargetAdj.CriterionFunction := "x1[t] + x2[t-1] - u[t]";
// Set number of iterations
TargetAdj.MaxIterationsCount := 25000;
// Set accuracy of solution
TargetAdj.Tolerance := 0.00001;
// Specify that do not use non-linear constraints in calculation
TargetAdj.CalcWithNonLinConstraints := False;
// Set problem type
TargetAdj.AutoSearchType := TargetAutoSearchType.tastMinError;
// Set number of cycles
TargetAdj.AutoAdjustMaxIter := 10;
// Set allowed accuracy
TargetAdj.AutoAdjustSatisfactoryTolerance := 1.01;
// Set number of constraints removed in one iteration
TargetAdj.AutoAdjustRemoveCount := 2;
// Execute calculation
Res := TargetAdj.Evaluate(T) As ITargetResults;
// If calculation is executed without errors, display results in the console
If res.Status = 0 Then
// Display optimal value
System.Diagnostics.Debug.WriteLine("Optimal value:");
System.Diagnostics.Debug.Indent();
System.Diagnostics.Debug.WriteLine(res.OptimalValue);
System.Diagnostics.Debug.Unindent();
// Display controlling variable values
For j := 1 To VarsC.Count Do
VrblC := VarsC.Item[j - 1];
System.Diagnostics.Debug.WriteLine("Controlling variable values '" + VrblC.Id + "':");
System.Diagnostics.Debug.Indent();
For i := 1 To T Do
Val := Res.VarValues[VrblC.Id].GetValue(i - 1) As double;
System.Diagnostics.Debug.WriteLine(i.ToString() + ": " + Val.ToString());
End For;
System.Diagnostics.Debug.Unindent();
End For;
// Display values of phase variables
For j := 1 To VarsP.Count Do
VrblP := VarsP.Item[j - 1];
System.Diagnostics.Debug.WriteLine("Phase variable values '" + VrblP.Id + "':");
System.Diagnostics.Debug.Indent();
For i := 1 To T Do
Val := Res.VarValues[VrblP.Id].GetValue(i - 1) As double;
System.Diagnostics.Debug.WriteLine(i.ToString() + ": " + Val.ToString());
End For;
System.Diagnostics.Debug.Unindent();
End For;
// Display optimal trajectory of criterion function
System.Diagnostics.Debug.WriteLine("Optimal trajectory of criterion function:");
System.Diagnostics.Debug.Indent();
For i := 0 To Res.CriterionFunctionTrajectory.Length - 1 Do
System.Diagnostics.Debug.WriteLine(Res.CriterionFunctionTrajectory.GetValue(i));
End For;
System.Diagnostics.Debug.Unindent();
// If calculation is completed with error, display its text
Else
System.Diagnostics.Debug.WriteLine(res.ErrorMsg);
End If;
End Sub;
See also: