PPStat: IUnitRootTestStatistic;
Свойство PPStat возвращает значение статистики теста Филлипса-Перрона.
Для получения значения скорректированной дисперсии остатков используйте свойство ISmPhillipsPerronTest.F0.
Для выполнения примера добавьте ссылку на системную сборку Stat.
Sub UserProc;
Var
PP: SmPhillipsPerronTest;
SumStat: ISummaryStatistics;
PPStat: IUnitRootTestStatistic;
can: Array[43] Of Double;
i, res: Integer;
Begin
PP := New SmPhillipsPerronTest.Create;
// Задаем значения переменных
can[0] := 6209; can[1] := 6385; can[2] := 6752; can[3] := Double.Nan; can[4] := 6495;
can[5] := Double.Nan; can[6] := 7349; can[7] := 7213; can[8] := 7061; can[9] := 7180;
can[10] := 7132; can[11] := 7137; can[12] := 7473; can[13] := 7722; can[14] := 8088;
can[15] := 8516; can[16] := 8941; can[17] := 9064; can[18] := 9380; can[19] := 9746;
can[20] := 9907; can[21] := 10333; can[22] := 10863; can[23] := 11693; can[24] := 12242;
can[25] := 12227; can[26] := 12910; can[27] := 13049; can[28] := 13384; can[29] := 14036;
can[30] := 14242; can[31] := 14704; can[32] := 13802; can[33] := 14197; can[34] := 15010;
can[35] := 15589; can[36] := 15932; can[37] := 16631; can[38] := 17394; can[39] := 17758;
can[40] := 17308; can[41] := 16444; can[42] := 16413;
//Выбор тестируемого
ряда
PP.Serie.Value := can;
// Тип проверяемого ряда
PP.TestedSeries := ADFTestedSeriesType.Level;
// Метод обработки пропусков
PP.MissingData.Method := MissingDataMethod.LinTrend;
// Тип модели
PP.Equation := ADFEquationType.Constant;
// Метод для вычисления скорректированной дисперсии остатков
PP.F0SpectrumEstimation := F0SpectrumEstimationType.BartlettKernel;
// Порядок авторегрессии
PP.AutoRegressionOrder := 9;
// Период идентификации
PP.ModelPeriod.FirstPoint := 1;
PP.ModelPeriod.LastPoint := 43;
res := PP.Execute;
For i := 0 To PP.WarningsCount - 1 Do
Debug.WriteLine(PP.Warnings[i]);
End For;
PPStat := PP.PPStat;
SumStat := PP.SummaryStatistics;
If res = 0 Then
// вывод статистических значений
Debug.WriteLine("===Статистики теста Филлипса-Перрона===");
Debug.WriteLine("Значение статистики: " + PPStat.Statistic.ToString);
Debug.WriteLine("Значение вероятности: " + PPStat.Probability.ToString);
Debug.WriteLine("Критические значения: ");
Debug.Indent;
For i := 0 To PPStat.CriticalValues.Length - 1 Do
Debug.Write(i.ToString + " ");
Debug.WriteLine(PPStat.CriticalValues[i]);
End For;
Debug.Unindent;
Debug.WriteLine("Скорректированная дисперсия остатков: " + PP.F0.ToString);
Debug.WriteLine("Дисперсия остатков: " + PP.S0.ToString);
Debug.WriteLine("===Вспомогательная регрессия===");
Debug.WriteLine("Коэффициенты вспомогательной регрессии:");
Debug.Indent;
For i := 0 To PP.ModelCoefficients.Estimate.Length - 1 Do
Debug.WriteLine(PP.ModelCoefficients.Estimate[i]);
End For;
Debug.Unindent;
Debug.WriteLine("Описательные характеристики вспомогательной регрессии:");
Debug.Indent;
Debug.WriteLine("Статистика Фишера: " + SumStat.Fstat.ToString);
Debug.WriteLine("Вероятность для статистики Фишера: " + SumStat.ProbFstat.ToString);
Debug.Unindent;
Else
Debug.WriteLine(PP.Errors);
End If;
End Sub UserProc;
После выполнения примера в окно консоли будут выведены результаты расчёта теста Филлипса-Перрона.
См. также: